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1. Abstract 
Osmolarity has a significant impact on the growth and productivity of 
industrial mammalian cell cultures.  Over the course of a fed-batch culture 
the osmolarity can increase from ~290mOsm/kg to 500mOsm/kg (Zhu 
2005).   Osmolarity increases of this magnitude are detrimental to 
mammalian cell cultures, reducing viability by as much as 50% (Kurano 
1990).  However, increases in osmolarity can increase specific production 
rates of antibodies and other recombinant proteins by as much as twofold 
(Ozturk 1991).  In order to engineer mammalian cells for optimal 
recombinant protein production it is necessary to have a full understanding 
of the cellular response to osmotic stress. 
 
Recent literature has shown the importance of the transcription factor 
TonEBP/NFAT5/OREBP in the cellular response to osmotic shock 
(Irarrazaba 2004, Lopez-Rodrıguez 2004, Neuhofer 2002).  NFAT5 has 
been proposed as central to the cellular osmotic response (Dmitrieva 2005).  
The importance of this transcription factor has been demonstrated in a 
number of mammalian cell lines including MDCK, HeLa and COS-7.  We 
hypothesize that NFAT5 also plays a significant role in industrially relevant 
Chinese hamster ovary (CHO) and murine hybridoma OKT3 cell lines. 
 
To test this hypothesis, I propose to develop a model and experimentally 
characterize the response.  The activity of NFAT5 will be measured 
experimentally.  The experimental data will be incorporated into a 
computational model describing the role of NFAT5 in the osmotic stress 
response. The modeling effort will focus on NFAT5’s relationship to the 
independent variable of osmolarity and to the dependant synthesis and 
uptake of osmolytes.  The model will be used to determine what portion of 
the osmotic response can be accounted for solely by NFAT5 or if other 
factors or feedback loops are required to explain the observed dynamics. 
 
Additional experimental work will be performed, as time and resources 
allow, in order to more fully characterize the osmotic response.  Targets of 
these explorations include upstream signaling components as well as 
downstream osmolyte accumulation.   
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3. Introduction 
Rensselaer’s multidisciplinary program is “designed for a new breed of 
student whose interests overlap several disciplines.”  It is my hope that this 
proposal strongly reflects the ideals of this program.  Within this proposal 
one will find diversified work ranging from the practical application of the 
workhorses of the biological sciences to the application and development of 
mathematical modeling tools.  The work will also be informed by a 
partnership with chemical and biological engineering and a well-developed 
background in computer science and computational intelligence.  
 
This project is motivated by the rapidly growing markets for antibody related 
applications.  Optimization of the complicated and expensive manufacturing 
processes is of key importance for making antibody-based tools and 
therapeutics more readily available.  Our project is focused on the 
optimization of the organism itself which produces these antibodies. 
 
The ultimate goal of this work is a comprehensive model of the mammalian 
antibody production.  On the way toward that view is a model of the cellular 
response to osmotic shock.  This work is just one of the many necessary 
steps toward those goals.  The idealized system-wide view would allow one 
to fully optimize the pertinent parameters affecting antibody production.  
This system-wide view is an important component of the vision of “systems 
biology.” 

3.1. What is Systems Biology? 
To some, systems biology is a new, exciting, rapidly-evolving, field of study.  
At the other end of the spectrum, systems biology is simply another catch 
phrase for work that would be happening even if the phrase didn’t exist.  I 



suspect that there is truth in each of these observations.  Indeed the 
biological sciences are experiencing a renaissance of sorts with enormous 
amounts of information becoming available every day through the use of 
tools and capabilities which are developing at heretofore unfathomable 
rates.   

  “I am a Biologist, and I work on systems. 
 I guess that makes me a Systems Biologist.” 
                            -Howard Berg, ICSB 2005 

 
If you take some time to search out the various definitions which have been 
proffered (Kitano 2002, Hood 2003), you will find a few observable threads 
or themes that run through each of these descriptions.  First, the notion of 
complexity is present in most of these descriptions indicating the need for 
new tools for deciphering the activity in these systems or making sense of 
the data that can be obtained from relevant experiments.  Some of these 
descriptions use words like “components” or “levels” which are abstractions 
for objects that may contribute to the overall behavior of something larger; 
the system.   The recognition of the need for and the contributions of 
computational tools, and even concepts or approaches, is also present in all 
of these descriptions.   
 
One of the strongest themes of systems biology is the cross-disciplinary 
approach.  This portion of the description is unique among these themes in 
that it speaks to the people doing the work, not just to the tools or the 
biological questions to which they are applied.  This simply recognizes that 
future progress will be enabled and enhanced by bringing the wisdom of a 
number of fields to bear on these problems. 
 
One could view an idealized systems biology exploration in light of an 
iterative cycle of experimental and computational work.  Each of these 
phases would inform the next.  Experimental work would provide further 
data to enhance the computational model.  Hypotheses could be tested in-
silico to determine what experimental technique would best refine the 
model, or provide the most useful information in regard to current data.  

3.2. Model Scope 
This exploration seeks to lay the groundwork for a comprehensive systems 
view of antibody production.  I expect to contribute a conceptual framework, 
experimental data and computational components.   The experimental and 
computational results from this endeavor should be able to stand on their 
own.  The framework utilized here should allow for the integration of future 
experimental and computational work.   
 
I propose an ordinary differential equation (ODE) model to capture the 
dynamics of interest of the cellular response to increased osmolarity.  While 
some of the elements in the model will explicitly fit experimental data, other 

“Systems biology is the 
study of the interactions 
between the components of 
biological systems, and how 
these interactions give rise 
to the function and behavior 
of that system (for example, 
the enzymes and 
metabolites in a metabolic 
pathway). 
 
A subtle variation of the 
standard scientific method, 
the systems biology 
approach is a cycle 
composed of theory, 
computational modelling to 
propose specific testable 
hypotheses, experimental 
validation, and then using 
the newly acquired 
quantitative description of 
cells or cell processes to 
refine the computational 
model or theory. Since the 
objective is a model of all the 
interactions in a system, the 
experimental techniques that 
most suit systems biology 
are those that are system-
wide and attempt to be as 
complete as possible. 
Therefore, transcriptomics, 
metabolomics, proteomics 
and high-throughput 
techniques are used to 
collect quantitative data for 
the construction and 
validation of models.” – 
Wikipedia, Systems Biology 
Entry 

Refine 
model 

Experiment 

In-silico 
experiment 



portions of the model will neccesarily generalize many of the known 
biological phenomena. 
 
An initial model will capture three main concepts.  

1. The insult of osmolarity within the context of the cell culture life-cycle 
2. The dependence of TonEBP activation on osmolarity 
3. TonEBP-dependant osmolyte accumulation. 

 
The model will exist within the context of a general cell culture life-cycle and 
the experimental protocol for osmotic stress.  Our interpretation of this 
context will determine how we set up the independent variables in the 
system, namely osmolarity and osmotic gradient. 

3.2.1. Cell Culture Framework 
In the lab our cells are cultured in batch as opposed to the large fed-batch 
cultures used in industry.  In fed-batch cultures osmolarity becomes 
problematic both due to the addition of nutrients as well as the production of  
waste products, primarily lactic acid.  Lactic acid acidifies the culture, 
necessitating the addition of base to control the pH.  In doing so, the 
osmolarity of the culture increases over time. 
 
The cell culture timeline, or life-cycle, has three main phases after 
inoculation.  Initially there is a lag phase as the newly inoculated cells 
establish themselves.  The culture will then progress through an 
exponential growth phase and will eventually reach stationary phase.  In 
stationary phase cell growth slows.  Accumulation of toxic waste products 
contributes to the decline of viability. In batch cultures the depletion of 
nutrients compounds these effects.   
 
As shown in figure 1, our experimental protocol, described in detail later, 
adds some significant events into the timeline.  The phenomena observed 
during these stages are important to include in our model.  . The model 
should incorporate important mechanisms from each of these phases.  This 
includes activation of signaling pathways during osmotic shock. Gene 
regulation and observable volume changes which present themselves 
during the “adaptation” phase should also be included. 

 
Figure 1. Abstraction of cell culture phases 
 
In defining the independent variables associated with osmotic shock there 
are two main avenues which will be pursued,  the initial shock and the 



ongoing stress.  The model should capture these input signals which we 
conceive as being available for the cell to act upon.   
 
The initial shock and physical response may be available to some of the 
rapid signaling machinery maintained in the cell.  As such, one of the inputs 
to the model should be a rapidly decaying signal as the osmotic gradient 
between the extracellular and intracellular environments is rapidly 
equilibrated as water leaves the cell.   
 
The cell is also subject to an ongoing insult of generally higher osmolarity of 
the environment.  This input could take two forms depending on the culture 
conditions we would like to fit.  For short term batch cultures, this variable 
will be relatively constant.  For longer fed-batch cultures the osmolarity will 
increase over time.  If either of these inputs are not necessary than we 
would expect our model to be able to capture all of the pertinent behaviors 
of the system without a dependency on one or the other of these inputs.  
Basic linear optimization techniques can be used to determine whether or 
not the system can be reduced.  

3.2.2. Transcription Factor Activation 
Activation of our transcription factor (TonEBP) bridges the scales between 
the aforementioned osmotic shock and adaptation phases.  Existing 
molecules will be activated as signaling cascades respond to the initial 
insult.  As the cell continues to adapt, it may be necessary for the cell to 
manufacture more of the relevant transcription factor(s).   
 
The primary transcription factor of interest to us is NFAT5/TonEBP/OREBP.  
Please note that each of these names are interchangeable.  This 
transcription factor has been shown to bind osmotic responsive elements to 
regulate transcription during an osmotic response (Miyakawa 1999).  
However Miyakawa does not show us a useful time course of activation.  
Their studies only show the activation levels after 18 hours of incubation in 
isotonic vs. hypertonic medium as shown in Figure 2.  Furthermore, the 
absence of NFAT5 results in a lack of osmoresponsive gene expression as 
shown in mouse studies(Lopez-Rodriguez 2004).  
 
 



 
Figure 2. Western blot of TonEBP after 18 hours of incubation in isotonic (I) 
and hypertonic (H) medium (Miyakawa 1999) 
 
NFAT5 is the focal point of the model and a primary point of investigation 
both experimentally and computationally. Experimentally it will be 
necessary to quantify the activation of NFAT5 during osmotic shock in our 
system.  Computationally, we will incorporate the experimentally 
determined activation levels of  NFAT5. 
 
The model must also incorporate the synthesis of new NFAT5.  This 
additional manufacture is evident in a number of different publications 
(Miyakawa 1999, Zhang 2005).  From these publications, figures 2 and 4 
show evidence of this additional synthesis in proportion to incubation time 
and osmolarity.  Figure 2 shows the dependence on time quite dramatically.  
It could be argued that Figure 4 qualitatively shows an increase in total 
intensity as a relation to osmolarity, even over a much shorter time scale. 
 
Another dynamic that will be important in the overall cellular response is the 
localization of activated NFAT5.  Under conditions of osmotic stress, 
nuclear localization of NFAT5 is increased (Zhang 2005, Tong 2006).  This 
indicates that two different pools of NFAT5 exist at any given time.  A 
complete model should maintain a pool of inactive, cytoplasmic, NFAT5 as 
well as activated, nuclear, NFAT5.  The dynamics of NFAT5 activation 
should include a generalization of the transport kinetics for the activated 
form.  Figures 3 and 4 demonstrate the existence of these pools.   



 
Figure 3. Localization of TonEBP under different mutations of the nuclear 
location signal (Tong 2006). 
 

 
Figure 4.  Ratio of TonEBP localization after 200, 300 or 500 mosmol 
solution for 30 minutes(Zhang 2005) 



3.2.3. Osmolyte Accumulation and Cell Volume 
An initial, and accessible, proxy for osmolyte accumulation is cell volume.  
Cell volume can easily be quantified visually or by utilizing a FACs machine 
to perform forward light scattering (Bouvier 2001).  Like many of the 
experiments described here we would be looking to determine relative 
volume changes over time and with respect to osmolarity.   
 
Initially we can utilize ratios expected from literature to scale the kinetic 
constants in our model.  Of particular usefulness are measurements by 
Ozturk and Palsson which show time evolution of cell volume with respect 
to osmolarity (Ozturk 2001).  Their results are shown in figure 5. 

 
Figure 5. Cell volume vs. osmolarity and time. (Ozturk 2001) 
 
While later versions of this model should specifically fit data from osmolyte 
quantitation experiments, we expect that the accumulation of osmolytes 
should be strongly coupled to the changes in cell volume.  See Section 6.4 
for an extensive list of pertinent osmolytes and their respective quantitation 
methods. 

3.2.4. Important Constants 
It should be noted that simulation constants can be estimated from literature 
sources or from our own experimental work.  Using the data available from 
prior published work will help us to establish a baseline model.   An 
example of such constants would simply be the half life of particular 
species. For example, the half life of TonEBP is approximately 10 hours (Na 
2003). 
 
Such values are subject to the specific experimental conditions and cell 
lines.  In cases where significant differences in conditions are understood, 
then these constants should be verified experimentally.  Much of the 
experimental work in renal systems uses osmotic conditions which are an 
order of magnitude different from viable conditions for hybridoma or CHO 
cells. This opens up the possibility that much of the literature on osmotic 
shock in renal systems may not have significant bearing on the 
characterization of our hybridoma or CHO system.  As such we will want to 
validate as much of the biological data being used in our model as possible.  



 (a) 
 
 
 (b) 
 
 
 (c) 

3.3. Preliminary Model 
Building and testing a conceptual model can help to establish baseline 
assumptions.  Described here is a very preliminary model that makes a 
specific set of assumptions and displays a particular behavior.   For this 
work of capturing the behaviors, relationships and dependencies of interest 
we will use a system of ordinary differential equations (ODE’s).  Equation 1 
shows the full set of equations for a simple model with a few basic 
assumptions. 
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Equation 1. A simple system of ODE’s   
 
This initial model has a single independent variable, O. This is intended to 
represent the osmotic gradient.  The dynamics of this gradient are defined 
in Equation 1.a.  The kinetic constant, kO, governs the rapid equilibration of 
this gradient immediately after the osmotic shock.  Each of the downstream 
kinetic constants should be chosen so that the responses will scale relative 
to the initial magnitude osmotic gradient. 

 
The dependent variables in this model are N, representing the amount of 
activated transcription factor, and P, the amount of accumulated 
osmoprotectants.  Equation 1.b describes the rapid activation and eventual 
decay of NFAT5.  In this simplified model the activation is dependant 
directly on the osmotic gradient through kinetic constant k1 and it decays at 
a rate defined by k2.   
 
The amount of accumulated osmoprotectant depends only on the level of 
activated transcription factor.  Equation 1.c shows this relationship which is 
modulated by the kinetic constant k3.   



 

 
Figure 6. Osmotic gradient, blue. Level of activated NFAT5, red.  
Accumulation of osmolytes, green. 
 
The overall behavior of the system is shown in figure 6.  In a very general 
sense, this does seem to satisfy some of our intuition, but much is left to be 
desired in terms of fitting experimental data. 
 
One example of how this model is lacking is inherent in the single 
independent variable assumption.  This assumption presumes that only the 
initial insult has an effect on the system.  It is well understood that this is not 
the case and future development will need to add at least one other 
independent variable capturing the ongoing osmotic stress which the cell is 
subjected to. 

3.4. Additional Concepts 
As time and resources permit additional variables will be added to the 
model based on experimental and published data.  Each additional 
biological component for which we can acquire experimental data can be 
integrated in to the model and related to other appropriate variables in the 
system.   

3.4.1. Signaling 
The first significant event after osmotic shock is the transduction of signals 
through the cell.  Modeling the initial engagement of the cell’s information 
processing machinery can give important clues as to the mechanisms of 
control for the cell’s osmotic response.  Biological experiments will be 
undertaken in an effort to characterize the pattern of activation during 
osmotic stress.   

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Time course

Unitless Time

R
el

at
iv

e 
co

nc
en

tra
tio

ns



 
These pathways involve a number of common species.  In particular we will 
be looking to quantitate the activation of various kinases.  The specific 
species of interest are discussed in detail below.  
 
There are a number of questions we would like to be able to answer about 
the signaling component of the system. How is the signal transduced 
through the system?  How do these signals connect to and effect 
transcription? How long do the signals remain active, and how are the 
signals quenched?  Building a model on the principal data will give us a 
place to discover some of the boundaries of the system. 

3.4.2. Osmotic Pressure 
The largest scale, physically as well as with respect to time, incorporated in 
this model is that of cell volume recovery.  This recovery occurs on a scale 
of about 2 hours after osmotic shock (Ozturk 1991).  Along with this 
recovery we should be able to determine the time course of osmotic 
pressure on a cell. 
 
How is osmolyte accumulation modulated by osmotic stress? The primary 
feedback loop in our system is dependant on osmolyte accumulation.  As 
the cell is affecting the osmotic gradient it is also sensing it. One possible 
output for this model would be the time course for the osmotic gradient.  
This output would yield a measurable stopping condition.  Cells detecting 
an osmotic gradient for a prolonged period of time must either adapt to that 
stress or remain in a stressed state.  Longer term gene expression 
experiments show changes in expression profiles leading one to believe 
that the cell does not enter one persistant state during prolonged periods of 
stress.  Determination of the time at which the cell stabilizes this volume 
and pressure can then be compared with the activity of the cell’s osmotic 
responses. 
 
Two of our primary references utilize the Boyle-Van’t Hoff relation (Van`t 
Hoff 1887, Nobel 1969)  to interpret their biological data.  Ozturk utilized this 
relation to describe the observed changes in cell volume (Ozturk 1991).  
Klipp also uses Boyle-Van’t Hoff for capturing the temporal evolution of the 
internal osmotic pressure in their yeast model (Klipp 2005).  It is not 
immediately clear how to integrate this mechanism into our model.  
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Equation 2. Boyle-Van’t Hoff for cell volume and osmotic pressure (Ozturk 
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Equation 3. Boyle-Van’t Hoff and internal osmotic pressure (Klipp 2005)  

4. Additional Background 
This work relies heavily on previous results from this lab and from literature.  
Data from various published sources, as it relates to our model, will be used 
as a part of the model or as a means to validate the model.  Numerical 
approaches previously described will inform how our model is structured. 
 
There are three main sources of information which we will take advantage 
of.  Firstly, previous osmotic stress literature, particularly related work on 
renal cells, will be an important source.  Secondly, a previous model on the 
osmotic response of yeast will provide us with a scaffold for our modeling 
efforts. Thirdly, a recent review paper pointing out the major components of 
the mammalian pathway will provide our initial targets for experimental 
work.  Each of these sources is described below. 
 
Another model which provides a useful reference, even though it is not 
directly related to osmotic stress, is a previously published model of IқB-NF-
қB oscillations (Hoffmann 2002) and more recent developments (Nelson 
2004).  Such a model will be useful in an iterative process of testing various 
postulated hypotheses and directing experimental efforts towards the areas 
which will have significant impact on our ability to manipulate the physical 
system to achieve our desired results.   

4.1. Model Systems for Osmoprotective Mechanisms 
Osmotic effects have been studied in great depth in a number different 
organisms.  Renal cells provide an interesting mammalian system for the 
study of osmotic shock as they are one of a relatively few types of 
mammalian cells which live in an environment with widely fluctuating 
osmolarity.   This fluctuation is well beyond the 300mOsm of plasma.  For 
example, Neuhofer et al report ~800 mosomol/kgH2O of salt and over 
1,000 mosomol/kgH2O of urea in rat renal medulla(Neuhofer 2002).   Madin 
Darby Canine Kidney cells (MDCK) are commonly used in renal related 
research.  Data from these papers will provide useful basis for modeling just 
as they have provided an indispensable resource for conceptual work. 
 
Fish and plants also must deal with varying osmotic pressures.  Of 
particular interest are gill cells from euryhaline fish species.  These fish 
species can adapt between fresh and salt water and it is therefore expected 
that their gill cells should exhibit unique osmoregulatory function.  More 
information about osmoregulation in non-mammalian species can be found 
in Appendix II, which is my contribution excerpted from a recently published 
book chapter (Sharfstein, et al. 2007). 



4.2. Yeast Model 
The osmotic response in yeast has been studied extensively.  This system 
was adeptly modeled in a similar manner to our intent (Klipp 2005).  Klipp et 
al developed an ODE model which sought to investigate the dynamics of 
the system.  One of the main phenomena they were looking to observe was 
how feedback in the HOG pathway contributed to osmoadaptation.   
 
A conceptualization of the model is shown in figure 7.  In the figure you can 
observe each of their five main modules: 

1. A phosphorelay module 
2. MAPK cascade 
3. Gene expression 
4. Osmolyte accumulation 
5. Biophysical changes 

These modules were each constructed independently to fit experimental 
and published data. 

Figure 7. Yeast osmoregulation model (Klipp 2005) 
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Equation 4. General ODE form (Klipp 2005) 
 
The ODEs in Klipp’s model generally take the form of equation 4. In this 
formulation m is the number of biochemical species, r is the number of 
reactions each with a rate v and stoichiometry n. This equation governs 
how the concentration of each species evolves over time.  
 
One of the most interesting predictions which Klipp was able to make with 
their model regarded serial shocks.  They showed that the pathway can be 
activated again by an additional shock.  Furthermore, they showed that this 



reactivation would not be possible if the pathway were structured such that 
the phosphatases provided the primary feedback control.  They 
demonstrated that the gene transcripts for phosphatases should not 
increase by more than two-fold. 
 
This model provides us with a good scaffold after which to pattern our 
modeling efforts.   

4.3. Mammalian Pathway 
Much of the planned work has been informed by a review paper from renal 
related literature (Dmitrieva 2005).  This review sought to relate DNA 
damage and osmotic regulation.  Shown in figure 8 is a conceptual view of 
some of the major components in this response. 

 
Figure 8. Mammalian osmostress pathways (Dmitrieva 2005) 
 
This model can be separated into a few main stages.  First, the signal 
transduction that takes place in response to the stimulus.  In this stage, we 
also address activation of various kinases in the signaling pathways.  
Second, any change in gene expression that is controlled via the previous 
signal cascade.  This portion of the model entails activation of transcription 
factors.   Third, any accumulation of osmolytes or other significant changes 
in the proteomic profile of the cell.  This portion of the model addresses the 
process of protein production and incorporates time constants which will 
capture transcription and translation, as well as any known post-
translational processes.  Finally, the osmolytes of interest are accumulated 
to balance the osmotic pressure. 
 
The work proposed will investigate many of the players outlined by 
Dmitrieva.  The species of interest and the intended experimental methods 
are described below. In general terms, we are looking to map Dmitrieva’s 
conceptual model on to the structure provided by Klipp’s computational 
model. As such we will look to query many of the primary components of 
the physical system as described in the Dmitrieva paper. 



5. Proposed Work 
I intend to undertake a number of experimental and numerical tasks to 
further develop and refine the model to a point where it accurately reflects 
our physical system.   

5.1. Osmotic shock experiment 
All of the experimental work occurs within the context of osmotic shock. 
The samples for this work will be taken in accordance with the following 
protocol.  Cells will be cultured into mid-exponential phase.  Cells are 
cultured in MEM-alpha modified (CHO) or in IMDM (OKT3).  The osmolarity 
of these media formulations is typically around 290mOsm, the standard 
accepted values for plasma, which makes these media isotonic w.r.t. 
plasma. 
 
At this point a pre-stress control sample will be taken and maintained in 
whatever buffer is required for the given assay.  Osmotic shock is induced 
by increasing the osmolarity of the medium by 100 mOsm by the addition of 
NaCl.  Samples are taken at 5, 10, 15, 30, 60 and 120 minutes after shock.  
This is our experimental handle on the independent variable in our model.   
 
Given our aforementioned assumption that the cells will respond 
proportionally to the magnitude of the stress, it will also be valuable to 
gather data from different levels of osmolarity.  In this case the same 
protocol will be followed using a range of osmolarities.  All subsequent data 
gathered from these samples will be indexed with respect to the induced 
osmolarity.   

5.2. Quantifying TonEBP Activation 
Of primary importance is the quantification of transcription factor activation 
in our cell lines.  Assays used in the literature such as Luciferase reporter 
plasmid (Na 2003; Irarrazabal 2004) and immunocytochemical (Na  2003) 
are not ideal when working with suspension cultures.  ELISA techniques 
would be ideal but are currently unavailable for the specific transcription 
factor of interest.  This leaves us with gel-shift techniques. We will be using 
an electrophoretic shift assay (EMSA) as utilized previously in literature 
(Irarrazabal 2004). 
 
I will be using a chemiluminescent EMSA kit from Pierce to measure the 
amount of available TonEBP over time.  The kit from Pierce provides all the 
necessary reagents for the task excepting the biotin labeled DNA for the 
TonEBP concensus sequence.  The TonEBP consensus binding sequence 
has been determined to be TGGAAANNYNY where N is any nucleotide and 
Y is any pyrimidine (Stroud 2002).  Kojima et al utilized the sequence (5’-
TGGAAAGGACCAG-3’), the tonicity response element from the Osp94 
gene, for a similar EMSA analysis (Kojima 2004).  Figure 9 shows the 
results from their EMSA. 



 
For our analysis we will end up with a time sequence of slowly migrating 
bands.  The relative intensities of these bands should be sufficient for 
estimating a curve of relative TonEBP availability.  The kinetic constants in 
the model will be optimized to fit these curves.  The numerical tools used to 
fit this data will depend on the order and linearity of the model.  In the 
simplest case linear least squares will likely suffice. 
 
In addition to the time-dependant availability of TonEBP, we would like to 
further break this down into cytoplasmic and nuclear availability.  The 
dynamics of the relationships between these curves will be analyzed to 
determine the kinetics of TonEBP activation in our system.  

 
Figure 9. EMSA results, the slowly migrating band shows TonE/protein 
interaction (Kojima 2004). 

5.3. Quantifying Signaling Elements 
We have already begun to measure some of the commonly expected 
signaling kinases.  We are still in the process of optimizing two western blot 
kits from Cell Signaling Technologies for our application.  We have some 
preliminary results which do show upregulation of species of interest in this 
system.  In the process we have utilized both chemiluminscent and 
fluorescent secondary antibodies. 
 
The clearest result we have so far shows the increase of phosphorylated 
p53 in response to osmotic stress.  Qualitatively we see, in figure 10, that 
p53 remains in this phosphorylated state throughout the duration of the 
stress experiment and is only slightly present in the control sample. Figure 
11 shows previous results from literature which show similar results but at a 
different scale (Dmitrieva 2000). 



 
Figure 10. This figure shows phosphorylated p53 presence in relation to 
osmotic shock (Kiehl unpublished results) 
 

 
Figure 11. Changes in phosphorylated p53 in response to osmotic stress 
(Dmitrieva 2000) 
 
Working with another kit we have attempted to observe the state of a 
number of other kinases including SAPK, JNK, and HSP’s.  We have not 
been able to get anything conclusive as of this writing, but we have shown 
that there are notable changes over time as shown in figure 12.  Our goal 
as we continue to optimize this western blot is to get better separation and 
identification of the bands that appear more distinctly in those later time 
points as shown in the expanded portion of figure 12. 
 

 
Figure 12. Initial results from SAPK/JNK Western blot 
 

        Control       5’                  10’    15’                30’      60’                 120’ 



Further optimization of these protocols is necessary before we can 
incorporate these elements into the model.  This work will contribute and 
additional set of variables upstream of TonEBP.  As these signaling 
cascades are capable of responding very quickly to environmental changes 
we expect them to play a significant role in the initial activation of TonEBP.  
As soon as we have cleaner results from these we can fit curves to the 
relative intensities to determine the kinetics of each species of interest.  
Once these kinetics are determined, they can be added to the model as 
another set of variables and pursuant constants. 

5.4. Iterating on the Model 
To show growing usefulness of the model we will devise a suite of tests to 
run on the model as it is evolving.  These will simply test the goodness of fit 
for relevant outputs given specific input conditions. 
 
One test which is going to be very important will be to look at how the 
model behaves when the input signals are changed.  We’ll want to validate 
the model on a range of inputs including a rapid spike in osmolarity, gradual 
increase of osmolarity, steady high osmolarity or isotonic levels.  We want 
to be able to show that the simulated cellular response, in terms of any of 
the output variables, is consistent with observed data. 

6. Additional Methods and Published Data 
Methods and goals listed above are the primary focus of the work.  
However it is unknown how complete a picture of this system we will be 
able to devise based solely on that data.  As such a number of other 
experiments have been in order to tease out the behaviors of the species of 
interest through out the system.  Additionally, the use of published work will 
help us to qualify our results and tune our model.  This section contains a 
catalog of other useful data and experiments which may be incorporated in 
the final direction of the model. 

6.1. Physiological Effects and Antibody Production 
After stress we are interested in observing how the system contributes to 
the larger scale effects such antibody production and overall viability.  The 
following figures (13 and 14) show observations of these factors.  These 
experiments demonstrate increased antibody production with increasing 
osmolarities.  Also shown are the effects on cell volume.  It is interesting to 
note that higher osmolarities result in larger cell volumes. 
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Figure 13. Left, viable cells over time and different osmolarities (Ozturk 
2001). Right, antibody production with and without osmotic shock (Sun 
2004). 
 

 
Figure 14. Antibody production rates at various omolarities (Ozturk 2001) 
 
 

6.2. Signaling 
Matsuda et al. provide an early glimpse into the activation cascades in rat 
3Y1 cells(Matsuda 1995).  They show activity within three minutes of 
stimulation by 0.5M NaCl and a peak at about 30-60 minutes after exposure 
(Figure 15).  Kültz also identifies similar responses in Madin Darby Canine 
Kidney cells (MDCK) as shown in figure 16(Kultz 2001). 
 
Some of the primary enzymes involved in this process include p38, Fyn, 
PKAc, ATM and other SAPK/JNK's.  Assaying the activity of these kinases 
will provide the upstream constants.  Additionally, assaying Aldose 
Reductase will give us data on downstream effects.   



 
Figure 15. Various activations after osmotic stress (Matsuda 1995) 
   
 
 

 
Figure 16. Activity of various kinases after osmotic stress (Kultz 2001) 
 

6.2.1. Activity Assays 
We have completed some initial experiments using Invitrogen’s Omnia 
lysate kits.   These kits provide substrate for a fluorescent assay.  These 
experiments can be run with cell lysate on a fluorescent plate reader.  This 
makes it feasible to run a number of cell lines under the conditions outlined 
above.   
 
The activity of PKA was our first attempt at the use of one of these kits.  We 
have determined that we need to further optimize the technique to ensure 
significant results.  This will likely involve determining additional agents 
need to be included in the lysis buffer to ensure that the signal is not lost 
after the lysate is collected.  Each of the various kinases in question can be 
probed with similar techniques 



6.2.2. Protein Quantitation Assays 
As described earlier, we have also completed some initial experiments in 
quantitating the amounts of some of the species of interest.  Utilizing 
western blot kits from Cell Signaling technologies we have begun to 
optimize this experiment.  We are currently working with kits which have 
antibodies for a number of MAP kinases as well as stress activated kinases. 

6.3. Expression Data 
Previous work in the Sharfstein lab entailed a series of microarray 
experiments (Shen 2005).  The microarray was employed at several time 
points following osmotic stress. Ultimately one would like to be able to apply 
a method like network component analysis (Liao 2003) to elucidate the 
relationships between genes in response to osmotic shock.  However the 
application of this method has a number of requirements which make it 
difficult to apply.  These requirements are necessary in order to keep the 
linear system of equations well-formed.  In order to meet these 
requirements, we would either have to over simplify our system or acquire a 
large amount of biological information. 
 
Network component analysis (NCA) can be quickly summarized as a least 
squares problem where E=AP.  E is defined as the expression profile for 
particular genes.  P holds similar time courses for a number promoter 
genes.  A then provides connectivity between the promotors and the 
ultimate gene expression profiles in E.  The difficulty in applying this method 
comes in defining A.  This matrix must meet a number of numerical 
requirements in order to keep the problem well-formed.  Also, one must be 
aware of all of the relevant promoter-gene connections.  NCA then will 
solve for the relative weights for each of the connections in A. 
 
In parallel with the work here I will be pursuing some other techniques with 
professor Embrechts.  These techniques offer similar benefits to SVD.  The 
jury is still out as to how much can be derived from this data.  Some say 
that SVD and PCA like techniques won’t render any interesting insights 
(Liao 2003). 

6.4. Osmolyte Accumulation 
Production of osmolytes serves to balance osmotic pressure.  To fully 
characterize the system we’ll want to watch a number of quantities over 
time.  The total cell volume and the total amount of protein will be important 
quantities to track. 
 
An early review by Garcia-Perez and Berg(Garcia-Perez and Burg 1991) 
lists five primary osmolytes: sorbitol, glycerophosphorylcholine (GPC), 
getaine, inositol and taurine.  It seems that this list has not changed 
significantly in 15 years as the same list, less taurine, appears in more 



recent articles(Dmitrieva 2005).  Beck et al provide an additional review of 
these osmolytes as summarized below (Beck 1998). 

6.4.1. Glycerophosphocholine (GPC) 
Beck suggests that intracellular accumulation of glycerophosphocholine 
(GPC) comes primarily from reduced degradation rather than upregulated 
production.  GPC:choline phosphodiesterase, which splits GPC into choline 
and phosphoglycerol is inhibited by high extracellular NaCl.  Beck also 
speculates that another GPC degrading enzyme, non-specific alkaline 
phosphatase, may also be involved in this regulation.  GPC concentrations 
also increase with increased extracellular urea concentrations more so than 
other osmolytes. 

6.4.2. GPC Assay 
The YSI 2700 Biochemistry Analyzer can be used to quantify choline.  
Glycerophosphorylcholine can be converted to choline by incubation at 
37oC for 30 min with phospholipase D (from Streptomyces chromofuscus, 
Boehringer, 6 units/cuvette) in the presence of albumin, 0.5 g/ml, and 10 
mM CaC12. The choline level will be assayed using YSI biochemisty 
analyzer 2700. GPC level can be obtained by subtracting the measurement 
value of untreated sample. 

6.4.3. Betaine 
Betaine is another significant osmolyte.  Beck states that the primary 
contributor to the rise in intracellular betaine is due to increased activity of 
the Na+/Cl-/betaine cotransporter betaine gamma-amino-n-butyric acid 
transporter BGT1.  BGT1 mRNA is differentially expressed in different 
regions of the kidney.  BGT1 mRNA  expression is enhanced by 
extracellular hypertonicity.  Transcription of BGT1 peaks five hours after 
hypertonic stress event and remains significantly upregulated after eight 
hours.  A tonicity-responsive enhancer element (TonE) is found in the 5' 
region of the BGT1 gene.  Beck goes on to explain that phosphorylation of 
TonE or ORE binding proteins is not required for interaction with those 
domains, but it is required for them to upregulate transcription. 
 
Ryu et al show that addition of glycine betaine to cell culture medium can 
enhance specific productivity of certain Cho cell lines (Ryu 2000).  In the 
presence of glycine betaine Ryu observed higher protein titers at 
osmolarities which previously would have suppressed cell growth. 

6.4.4. Betaine Assay 
The betaine assay can be performed using near-infrared spectroscopy. The 
betaine peak is around 1660 nm, and the signal can be calibrated using the 
signal level at 1648 and 1672nm as baseline. (Harbeck 2004).  



6.4.5. Myo-Inositol 
The polyol myo-inositol is another accumulated osmolyte.  Beck describes 
a transport-mediated uptake process which is responsible for the 
accumulation of myo-inositol.   This uptake is via the Na+ dependent myo-
inositol cotransporter.  This transporter is preferentially located in the 
basolateral plasma membrane indicating that the uptake of this osmolyte is 
from circulation.  This transporter is encoded by the gene SMIT(SLC5A3) 
and transcription has been shown to be activated by hypertonicity.  No 
specific "enhancer element" like BGT1 or ORE had been determined as of 
Beck's writing. 

6.4.6. Sorbitol 
Sorbitol is another significant osmolyte.  One factor contributing to the 
increased accumulation of sorbitol, in response to hypertonic stress, is the 
increased activity of aldose reductase (AR) which converts glucose to 
sorbitol.  Meanwhile sorbitol dehydrogenase (SDH) which catalyses the 
conversion of sorbitol to fructose is downregulated under hypertonic stress.  
Beck states that the effect of SDH is less pronounced than the activation of 
AR.  The increase in AR activity is preceded by a 12 hour incubation of cells 
in hypertonic medium with a maximum availability of AR mRNA occuring 
24h after the increase in tonicity.  The human AR gene has three OREs 
upstream from the transcription initiation site. ORE has strong homology 
with TonE and may be controlled by the same interacting compound.  There 
is evidence that AR actiivity is decreased in the presence of 1M urea, and 
that other trimethylamines,notably GPC and betaine, reduce AR activity. 

6.4.7. Myo-inositol and Sorbitol Assays 
Myo-inositol and sorbitol levels can be determined with NAD dependant 
enzymes by observing the increase of NADH via spectrophotometry. 

6.4.8. Aldose Reductase Assay 
Aldose reductase is one downstream enzyme will also be measured. 
Aldose reductase activity from cell homogenates can be 
spectrophotometrically measured at 340 nm by following the decrease of 
absorption of NADPH with 10mM DL-glyceraldehyde as substrate at 37oC. 
(Bagnasco 1987) 
 

6.5. Other Metabolic Byproducts 
Given that the cells undergo additional stress simply as a byproduct of their 
own metabolism it is important to quantitate the effect of the cell on it’s 
environment. 

6.5.1. Lactate 
Principal among these byproducts is lactate.  Lactate is an important waste 
product.  Determining cell culture conditions which would limit lactate 



production could significantly improve viability.   As such we would like to 
incorporate extracellular accumulation of lactate into our model so that it 
can be related to the overall viability. This data may also be useful in one of 
the additional pursuits described in section 9.3. 
 
The lactate levels of the medium will be determined using a YSI 2700 
Biochemistry Analyzer (Yellow Springs Instrument, Yellow Springs, OH).  

7. Remarks and Future Directions 
Once a model has been constructed we can begin to query the model in a 
number of ways.  A simple approach would be to conduct a sensitivity 
analysis to determine the stability and the boundaries of the model.   These 
boundaries will be important to understand as one moves toward optimizing 
these systems.   Ultimately the model should be used in an iterative 
fashion.  This would involve first testing a hypothesis computationally.  
Secondly, a number of in-silico experiments could be ranked based on their 
overall predicted effect.   Those with the most promising predictions would 
then be tested experimentally with resulting data being used to further tune 
the model. 
 
One of the first things we expect to learn from initial experiments as we 
construct the model is the importance of NFAT5 in our system.  It should be 
apparent numerically, if not experimentally if NFAT5 is indeed as integral to 
the cell's response as literature currently indicates. 
 
Upstream of NFAT5 activation are a number of kinases and potential 
pathways feeding into the activation of NFAT5.  Again, numerically we 
should be able to separate out the contributions of each of these pathways.  
Furthermore, we should also be able to determine if these pathways can 
account for the total activation of NFAT5. 
 
Going further downstream, simple time course analysis can help us to 
understand the interaction between the cell's short and long term 
responses.  This could provide an experimental basis for engineering the 
cells' response.  For example, one could use the model to determine 
whether upregulating a particular osmolyte could enhance cell viability or 
productivity.  Furthermore, the model may be able to suggest which of the 
osmolytes appears to be a better candidate. Doing so would involve 
calculating the contribution of each the osmolytes to balancing the osmotic 
gradient. 

 
This proposal does not account for mechanosensitive components.  It is 
likely that this components play a significant role in the control of the cellular 
response.  Future work should look to quantify their contribution and 
integrate their behaviors into the model.  



This model should form a framework for integrating later experimental 
results relating to the dynamics of cellular osmotic response.  Having an 
operational model system alongside the biological system can provide 
valuable insight into the system and even direction for other biological 
experiments. 
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9. Appendix I: Other Pursuits 
In addition to the primary project described above, the following projects are 
ongoing.  I expect to be able to show some progress in each of these areas.  
It is likely that each of these projects will result in publication. 

9.1. Peptide Classification 
In partnership with Charles Bergeron, a graduate student in the department 
of Mathematical Sciences, I have participated in the Comparative 
Evaluation of Prediction Algorithms 2006 (COePrA) competition.  This 
competition has the stated goal of advancing modeling software and 
algorithms with emphasis on “the prediction of physico-chemical properties 
and biological activities from molecular descriptors derived from the 
chemical structure.” 
 
Together we submitted an entry for a problem involving the classification of 
short peptide sequences.  Our entry placed eighth out of 16 entries.  At face 
value this would appear to be an unremarkable result.  However, our result 
was obtained without the advantage of utilizing the extensive set of 
descriptors provided for each peptide.  This demonstrated the value of our 
submission in that our method was able to generate a competitive result 
while relying simply on the raw sequence.   We have been invited to submit 
a paper for potential publication in the Journal of Computational Methods in 
Sciences and Engineering. 
 

9.1.1. Method 
Our method utilized a simple mechanism of computing distances between 
LOGO’s generated for each sequence and each class of sequences 
(Crooks 2004). We used a random search algorithm to identify active 
nonapeptides in the prediction set. Random subsets of the joint calibration-
prediction superset were compared with the active calibration subset. The 
retained loss function is the Frobenius matrix norm of the difference 
between the logos. One thousand runs were completed and results were 
pooled together to make the final prediction. 
 

 
Figure 17. Logo for whole calibration data set. 

 
 
More information about 
COePrA can be found at 
http://www.coepra.org 



 
Figure 18. Logo for negative examples in calibration data set. 

 
Figure 19. Logo for positive examples in calibration data set. 

 
Figure 20. Logo for prediction data set 
 
Shown in figures 17-20 are visual representations of the Logos in question.  
The search algorithm seeks out a partitioning of the prediction data set 
(figure 20).  An optimal partitioning would yield a positive and negative 
subset of the prediction data set such that their logos would show a minimal 
distance to the respective calibration logo (Figure 18 or 19). 
 

9.2. Biochemical Reaction Network Evolution 
There is a slowly building body of literature around the concept of in-silico 
evolution of biochemical reaction networks.   Early work in the area looked 
simply at the wide variety of dynamics that could be generated from a 
specific network topology simply by evolving the rates of the interactions in 
that network(Bray 1994).  More current approaches have evolved a wide 
array of behaviors echoing those found in naturally occurring networks 
(Soyer 2006, Francois 2004, Pfeiffer 2005, Deckard 2004, Sauro 2006, 
Soyer 2006).  These efforts typically focus on ODE based simulations and 
work primarily in a continuous regime.   
 
As time permits I intend to follow up previous work (Kiehl  2003) by evolving 
networks while taking advantage of the stochastic regime.  Previous work 
simply targeted a specific set point as shown in figure 21. New experiments 



will focus on the development of networks with bifurcating behavior.  I would 
like to demonstrate that, while bifurcating networks can be described with 
ODEs, their specific distributions can only be examined with stochastic 
effects present.   

 
Figure 21. Sample evolved networks and the time evolution of each 
dependant species (Kiehl 2003). Dashed line indicates desired set point for 
species “0.” 
 
These efforts will take advantage of previous simulator development (Kiehl 
2004) and various computing resources on campus.  The computing cluster 
maintained by Lealon Martin’s research group will be an invaluable 
resource for this work.  Initial tests demonstrate feasible running times even 
taking into account numerous and potentially lengthy simulation times. 

9.3. Batch Culture Model 
A recent publication demonstrated a model of metabolism in antibody 
producing CHO cells (Gao 2007).   The model developed utilized metabolic 
flux analysis to fit the model to experimental data.  The authors have done a 
nice job simplifying the model as shown in figure 22. 



 
Figure 22. Simplified metabolic network (Gao 2007) 
 
The model leaves some room for additional interpretation.  It is more to the 
point to say that they created two models.  One model fits data during 
exponential phase, prior to stationary phase.  A second model fits the post-
exponential phase data.  This creates an unsatisfactory inflection point in 
the final output of the model as shown in figure 23.  This is also 
unsatisfactory as the model would seem to imply that the system is subject 
to different constants before and after that point.  While it is true that the 
reactions proceed at different rates, their approach explicitly switches the 
system from one state to the next. 



 
Figure 23. Simulation output for metabolic network (Gao 2007) 
 
Utilizing previously developed stochastic and hybrid simulation tools (Kiehl 
2004) it is our intent to capture the dependencies inherent in this change of 
state.  In extending the model we wish to capture the dependency on 
available energy.  This should allow us to more accurately capture the 
transition.  Utilizing stochastic methods will also allow us to observe how 
the distribution of behavior of an individual cell effects the global phase 
transition from exponential to stationary phase.  The model will be 
converted to SBML(Hucka 2003) and executed using the Merged ODE 
Stochastic (MODESTO) simulation engine (Kiehl 2004). 



10. Appendix II: Book Chapter Excerpt 
Find attached my contribution of an overview of non-mammalian osmotic 

stress pathways. 



11. Appendix III: Evolving Biochemical Reaction 
Networks: First Steps 

Find attached a poster abstract from the International Conference on 
Biochemical Reaction Networks 



12. Appendix IV: Hybrid Simulation of Biochemical 
Networks 

Find attached a prior paper that appeared in the journal Bioinformatics. 



13. Appendix V:  Scope of the IET Systems Biology 
Journal 

Included here is a statement regarding the scope of this systems biology 
journal.  This is simply intended to show the broad territory that some claim 
for systems biology. 

IET Systems Biology (formerly IEE Proceedings Systems 
Biology) covers intra- and inter-cellular dynamics, using 
systems- and signal-oriented approaches. Papers that analyse 
genomic data in order to identify variables and basic 
relationships between them are considered if the results 
provide a basis for mathematical modelling and simulation of 
cellular dynamics. Manuscripts on molecular and cell biological 
studies are encouraged if the aim is a systems approach to 
dynamic interactions within and between cells. 

• Genomics, transcriptomics, proteomics, metabolomics, 
cells, tissue and the physiome 
• Molecular and cellular interactions; gene, cell and 
protein function 
• Networks and pathways 
• Metabolism and cell signalling 
• Dynamics, regulation and control 
• Systems, signals, and information 
• Experimental data analysis 
• Mathematical modelling, simulation and theoretical 
analysis 
• Biological modelling, simulation, prediction and control 
• Methodologies, databases, tools and algorithms for 
modelling and simulation 

 
 



The Antibody Market 
Monoclonal antibodies (mAb’s) occupy a growing segment of the therapeutic market.  
Currently there are 17 monoclonal antibodies which are approved for therapeutic use with 
an additional 40 in late stage trials (Sannes 2006).   In 2005 the therapeutic mAb market 
reached $13 billion, with half of that number coming from just two drugs (Sannes 2006). 
 
These numbers do not include those mAb’s which are being developed for in vivo or in 
vitro diagnostics and imaging.  While these molecules are a product of the biotech 
industry, they are an important component of many tools of biotech research.  Antibodies 
do a significant amount of heavy lifting in modern biotech research.  The immunoassay 
market was an estimated $8.8 billion in 2006 and is expected to grow to $12.3 billion by 
2010 (Biocompare 2007).  

Herceptin, A prototypical Antibody Therapeutic 
One of the most well known mAb therapeutics on the market is Herceptin.™  
This mAb targets a receptor which is over expressed in certain breast 
cancers(Bange 2001, Sliwkowski 1999).   Herceptin targets the epidermal 
growth factor receptor, HER2, which is part of the ErbB family of tyrosine 
kinases.  This targeting results in cell cycle arrest and suppression of tumor 
growth.   

Antibody Producing Cell Lines 
In 1975 Köhler and Milstein first developed cell lines which could 
reliably produce monoclonal antibodies (Köhler 1975).  These cell lines
known as hybridomas, were a fusion of an antibody-secreting murine 
lymphocyte cell with an immortal murine myleoma cell.  From this 
process emerges an immortalized cell line which secretes antibodies 
that have been raised against a specific antigen.  

Antibodies in Modern Medicine 
Antibodies are an important component of the body’s natural defenses.
These glycoproteins recognize foreign substances and tag them for 
remediation by other parts of the immune system.    Modern medicine 
and the biotechnology industry, in general, have developed methods to
harness this “technology” for a number of purposes.  While “synthetic” 
antibodies have not proven to be the “silver bullet” they were once 
heralded as, they are an effective part of a growing number of 
treatments, lab research, diagnostics and imaging. 

 


